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A recent analysis of the propagation of order in a dilute 3-state Potts 
antiferromagnetic model on a triangular lattice at zero temperature by Adler 
et al. has shown the importance of nonlocality in the propagation of order. We 
study a linearized continuous version of this model, which can be mapped onto 
three independent percolation problems. We discuss the respective roles of 
nonlocality and nonlinearity, in particular in connection with central-force 
percolation. 
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M u c h  work  in s tat is t ical  mechanics  has been concerned with the crit ical 
behav io r  of pe rco la t ion  (1) and  o ther  geometr ica l  phase  t ransi t ions.  Two 
essential  p roper t ies  have been extensively used in these studies, bo th  
theore t ica l ly  and from a c o m p u t a t i o n a l  po in t  of  view: l inearity and  locality. 

M o r e  recently,  the need to cons ider  more  complex  s i tua t ions  resul ted in the 
s tudy of non loca l  a n d / o r  non l inea r  p rob lems ,  such as b o o t s t r a p  percola-  
tion, central-force percola t ion ,  damage  p r o p a g a t i o n  in cel lular  a u t o m a t a ,  (2) 

etc. 
One  simple example  of this is the p r o p a g a t i o n  of o rder  in the di lute  

3-state Po t t s  an t i fe r romagnet ic  mode l  on a t r i angula r  lat t ice at  zero tem- 
pe ra tu re  (3 -PAFT) .  (3'4) We in t roduce  here a con t inuous  version of  the 
3 - P A F T  and  then l inear ize  it. I t  turns  out  tha t  the l inear  mode l  is exact ly  
reducible  to three decoup led  pe rco la t ion  p rob lems  which can be visual ized 
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in a very simple fashion. Following a suggestion of Adler etal., (4) we 
consider the relation of this model with the central-force percolation (CFP) 
problem, (5-7) always treated in its linear approximation. We show that 
these models differ, although they share many common properties. 

Let us consider a triangular lattice where a proportion p of sites 
chosen at random are occupied and 1 - p are empty. On each occupied site 
i, we have a spin a~, which can take three values (say A, B, and C). We 
now introduce a Hamiltonian H defined as 

H =  J ~ gig/5(~ri, aj) (1) 

where the sum runs over all pairs of neighboring sites i, j. The value of e~ 
is 1 if the site i is occupied and 0 if not; J is a positive constant; and 6 is 
the usual Kr6necker symbol [i.e., 6(x, y) = 1 if x = y, and 0 if not] .  For 
the complete (p = 1) triangular lattice, there exist three ordered ground 
states with zero energy. The system is not frustrated. Once two adjacent 
sites are given two different states, a single ground state is selected, and 
therefore order propagates through the system. 

There exists a threshold value of the parameter p = p* below which 
order does not propagate. (4) The order parameter of the system is the con- 
centration of sites whose spin state is completely determined in all ground 
states. This problem has been described at length by Adler etal. (4) The 
determination of p* is a complex problem due to the fact that only a 
partial information is transmitted through a single bond: If, for instance, ai 
is in state A, a neighboring occupied site j will have two possible states of 
zero energy: namely B or C. A spin will be in a completely determined state 
if at least two independent and compatible pieces of information reach the 
site (see Fig. 1). 

We can now formulate a continuous version of this problem, which is 
a Heisenberg model. Let us attribute to all sites a unit vector si in a three- 
dimensional space and introduce the Hamiltonian He: 

H~ -- Jy~ <~As,. sj) ~ (2) 

with the same convention as in the previous Hamiltonian [Eq. (1)]. A 
single bond between two occupied sites i and j will have a zero energy if 
the two vectors s, and sj are orthogonal. Since these vectors are in a three- 
dimensional space, a single bond will not determine uniquely the vector s 
at a given site. This can be seen by fixing the direction of, say, si; then, 
sj will only be determined to lie in the plane perpendicular to si by the 
minimum-energy requirement. The continuous Heisenberg model has all 
the properties of the initial (discrete) 3PAFT. 
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Fig. 1. An example of a lattice where order is transmitted from left to right in the discrete 
3PAFT. The spins of the sites at the left border are fixed in the pattern ABCABC..., and the 
ground-state requirement dictates the values of all other spins in the network. If any site is 
removed so that one of the three bonds marked with arrows is broken, the state of the cluster 
to the right will only be partially ordered. 

However,  with the cont inuous version, we can quantify the ability of 
the system to transmit order. Suppose we have a square-shaped tr iangular 
lattice MNPQ. O n  one side of it, say MN, we set all vectors s to an ordered 
state ABCABCABC... [for  instance, A = (1, 0, 0), B =  (0, 1, 0), and 
C = ( 0 , 0 ,  1)]. At the opposite end, QP, we fix the vectors s to another  
ordered state, A'B'C'A'B'C'..., deduced from the previous by a ro ta t ion R 
in the three-dimensional space, i.e., A ' =  RA, B'= RB, and C ' =  RC. This 
rotat ion can be parametr ized by the three Euler angles (~o, 0, tp). Let us 
now compute  the min imum energy of  the lattice as a function of these 
angles. If the absolute min imum (zero energy) is obtained only for q~ = 0 = 
~p = 0 (modulo  symmetries), then order propagates  th rough  the system. If  
other  values of  ~0, 0, and ~ result in a zero energy, then the system is either 
partially ordered or not  ordered at all. When  the system is ordered, then 
there can exist many  local minima in the energy as a function of the Euler 
angles. The absolute min imum value of these energy minima which do not  
correspond to the reference state q~ = 0 - - ~  = 0 is a measure of  the ability 
of the system to transmit an order. 

In this present form, the cont inuous  model  is not  simpler to solve than 
the discrete one. We are thus led to consider the linear version of it. Let us 
consider an ordered state, e.g., the one imposed by one end of  the lattice, 
and label for simplicity A = (1, 0, 0), B =  (0, 1, 0), and C =  (0, 0, 1). This 
will consti tute the reference state we will refer to. We now introduce a small 
perturbation of this order. If a site had an ordered vector s = (1, 0, 0), then 
the per turbed vector will be s' = (1, ~2, ~3) with ~ ,8 1. The first componen t  
can remain 1, for its per turbat ion would show up in higher order  only. If  
this site is connected to a neighboring one where s " =  (/~1, 1,/33), then to 
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the first order, the scalar product reads s "  s"--fl~ + ~2, and therefore the 
energy of the bond will be 

E = J(/~ + ~)~ (3) 

With this procedure, we obtain a quadratic Hamiltonian for the lat- 
tice. We see here that the information transmitted through a bond is 
partial, since E does not depend on al nor f12. 

It turns out that this linearized model is exactly solvable. However, it 
differs significantly from both the original 3PAFT and the continuous 
(Heisenberg) model. 

Let us focus on one particular occupied site i whose perturbed vector 
is s ' =  (1, a2, a3) (its unperturbed state is A). This site is a neighbor of three 
sites j (see Fig. 1) whose reference vector is in state B. The energy of these 
three bonds is 

EAB = J ~  ~j(//~ + ~2) 2 (4) 

(a) (b) 
Fig. 2. An ordered state along the bottom edge of the network imposed in the linear 3PAFT 
model. This is marked by a bar. Shown are the connected clusters of the three honeycomb 
sublattices corresponding to the (a) AB, (b) AC, and (c) BC bonds. (d) The sites, marked by 
( � 9  that belong to the intersection of two of the three sublattices. These sites are ordered in 
the linear model. 
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(c) (d) 
FIGURE 2 (continued) 

where/~  is the first component of the perturbed vector in j. There are also 
three neighbors k whose reference state is C. Thus the total energy of the 
bonds originating in i is 

E = EA~ + EAc 

= J [~-~ ~j(flJ + o~2)z + ~ ~k(fl~l + ~3) 2] (5) 

We see that this energy is naturally the sum of two independent contribu- 
tions: one coming from AB-type bonding and another from AC bonding. 
For the complete lattice, there are three types of terms in the expression of 
the energy, reflecting AB, BC, and CA interactions. Each of these terms is 
summed over an independent honeycomb lattice (see Fig. 2). We have 
therefore merely reduced the original problem three percolation problems 
as follows. 

The continuous version of the site-diluted 3-state Potts 
antiferromagnetic model on a triangular lattice at zero temperature, once 
linearized, has a threshold for the propagation of order P*n which amounts 
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to the site-percolation threshold on a honeycomb lattice, i.e., 
Pli* = 0.6962.Cl) The bond-diluted problem similarly has a threshold Pli* = 
Pc = 1 - 2 sin(n/18) = 0.65271. cl) At threshold, on each of these honeycomb 
lattices we have a problem identical to the random resistor network 
percolation problem. Let us consider a potential V equal to the second 
component of s on A-type sites and to minus the first component of s on 
B-type sites. Then, in terms of this potential, the AB contribution of the 
energy is 

EAB : J ~  ~ i ~ j ( Y i  - V j )  2 (6) 

Thus, this may be interpreted as the energy dissipated in a site-diluted 
percolation problem on a honeycomb lattice with conductances 2J. Finally, 
we know that the conductance of the lattice will go to zero critically at 
threshold as ( p - p c )  t, where t is the conductivity critical exponent 
t =  1.30 +0.01. cl) Therefore, we deduce that the "rigidity" modulus of the 
linearized 3PAFT vanishes at threshold as ( p -  p*)t. By rigidity, we mean 
the second-order tensor which defines the quadratic energy with respect to 
the perturbation angles. 

All properties of this model can thus be deduced from those of usual 
percolation. However, we note that nonlocality is still present in the 
linearized model, though now being rather trivial, in the form of having to 
gather different partial information from two lattices at each site: for a site 
with spin (1, ~2, ~3), we need to know that it belongs to the infinite cluster 
of the AB sublattice and the infinite cluster of the AC sublattice. The first 
of these two requirements determines ~2 to be zero, while the second one 
forces ~3 to be zero. Therefore, nonlocality has an observable consequence, 
namely that there exists a set Sorde~ of ordered sites (completely determined 
state) whose structure can be directly understood from the previous obser- 
vation: it is the union of three (one for each state A, B, and C) intersections 
of two infinite clusters (two sublattices per site), 

S o r d e  r = S A k._) S B k._) S C 

= (SAa c~ SAc) w (SAa (~ Sac) w (SAc c~ Sac) (7) 

where SAa is the infinite cluster of the AB network (see Fig. 2d). The fractal 
codimension of SA is obtained as the sum of the codimensions of two inde- 
pendent percolation clusters SA~ and SAc. Since the three sets SA, Sa, and 
Sc  are on different sites, their union has the same statistical properties as 
each, and thus we deduce that the fractal dimension of the set Sorder is 
dorde r = d--2fl /v,  where d is the space dimension, fl and v are the critical 
exponent for percolation, ca} fl = 5/36 and v = 4/3, thus dorder = 43/24 = 1.79. 
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We also note that this set is not necessarily connected. On the other hand, 
sites with partial order form a connected cluster whose fractal dimension at 
threshold is identical to that of percolation, i.e., d -  ~~Iv = 91/48 = 1.89. 

Unfortunately, the linearization we have performed is not innocent. 
The linearized model may be ordered even though the continuous one is 
not, for the same initial geometry. An example of this is given in Fig. 3. If 
a single path from one honeycomb lattice exists (MNP...), suppose that M 
is of type A; then N is not A, and P can be anything. In the linearized 
model, if the vector in M is (1, 0, 0) and in N is (/71, 1,//3), then in the 
ground state, //1 = 0. Up to this point, the two models agree. Now if the 
state in P is (1, c%, c~3), then a zero energy requires e2 = -/ /1 = 0. The infor- 
mation propagates (as an electric potential) all along the path MNP... in 
the linearized model, although it stops after one step in the continuous 
model. The site marked by an arrow in Fig. 3 shows a typical example of 
this. 

The difference between the full and the linear 3PAFT occurs because 
of a lower bound for the threshold: -*  >- -*  =0.6962. This bound is well F ~ Flirt 
inside the interval given in ref. 4 for the problem of site dilution (0.635 < 
p* < 0.782). 

The reason underlying the possible difference thresholds for the two 
models is fundamental. In the linearized model, we consider infinitesimal 
changes in the orientation of the spin s and we compute the energy with 
respect to the "undeforrned" geometry, i.e., changing only one spin at a time 
and leaving all the other, as in their reference state. We will come back to 
this point below in connection with the CFP problem. 

Adler eta/. (4) suggested that some connection might exist between the 

Fig. 3. The network of Fig. 1 where one site has been removed. This network is no longer 
ordered, as is exemplified by the spin distribution shown, which is different from the one of 
Fig. 1. However, in the linear 3PAFT, this network is still ordered, since all the three 
honeycomb sublattices still percolate through the entire network. 
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3PAFT problem and the CFP problem. (5 7) Let us briefly recall the defini- 
tion of the latter: linear Hookean springs are distributed on the bonds of 
a triangular lattice in such a way that the springs are free to rotate at their 
endpoints. A fraction p (chosen at random) of the bonds is present, while 
1 - p  are missing. The elastic modulus of the lattice goes to zero at the 
CFP threshold p = Poen" The Hamiltonian of the lattice reads 

Hcen = J Z 8/J ~(Ui -- nj)" n/j] 2 (8) 

where e,7 is 1 if the bond i - j  is present and zero otherwise, ui is the dis- 
placement of the site i, nij is a unit vector aligned along the bond i - j ,  and 
J is an elastic constant. In this problem, too, the propagation of informa- 
tion through a single bond is only partial: only the displacement along the 
axis of the bond counts. This renders the determination of the threshold 
very difficult. 

In most studies (refs. 5-7 and following works), only the linearized 
model of CFP is considered. The full Hamiltonian, where n 0. is a function 
of ui and uj, is necessary to account for buckling or large deformation; 
however, it quickly becomes numerically intractable. Although some recent 
attempts have been made 19) in this nonlinear description, the simultaneous 
occurrence of nonlinearity at the basic level and of criticality is a prohibit- 
ing factor. In the linearized version, n~j is the direction of the bond in the 
"undeformed" geometry. (This is the usual procedure followed to linearize 
continuous medium elasticity. (1~ In this way, the Hamiltonian Hoe n turns 
out to be quadratic in u. Indeed, the continuous 3PAFT and the CFP are 
very close to one another, even in their nonlinear characteristics, and some 
understanding may be gained in comparing both problems. If CFP and the 
3PAFT models were identical,-this would also hold for their linearized 
versions. We note that these differ at least in one important (and intrinsic) 
respect: the linear 3PAFT model is decoupled, whereas this is not true for 
the CFP. In other words, it can be shown that in one case it is possible to 
diagonalize simultaneously all interaction matrices for all bonds originating 
from one site, and not in the other. (Only an extreme situation exists where 
the CFP problem can be partially decoupled, (11) and thus can give rise to 
a usual percolation problem.) A numerical result also shows a difference in 
the thresholds estimated to be Pcen = 0.642_ 0.VVZ and P*n = 0.65271 for 
bond dilution in both cases. 

Although these two models are not equivalent one to the other, we can 
compare some of their properties: 

1. Both models are nonlinear and nonlocal in their original 
(continuous) formulation. 
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2. Both can be linearized, under similar assumptions, and still have 
a nonlocal character. 

3. The linear 3PAFT model has been shown here to belong to the 
universality class of percolation; this has also been suggested to be true for 
the C F P  problem on the basis of numerical simulations/7) 

4. We have also seen for the 3PAFT that the partially ordered sites 
have a fractal codimension equal to that of percolation, whereas that of the 
totally ordered sites was twice as large. A recent investigation of the surface 
properties of the C F P  model (12) revealed that the sites that have at least 
one degree of freedom frozen had the same scaling exponent as in usual 
percolation, and totally rigid sites had a larger codimension, close to, but 
smaller than, the double (0.55 compared to 2/3). The reason why this 
second codimension is somewhat smaller might come from the fact that 
since no decoupling occurs in the component  of the displacement vectors, 
correlations exist in the lattices where partial information is transmitted. 

Pursuing the correspondence between both problems, it would be of 
interest to find the equivalent discrete model of C F P  (in the spirit of the 
original 3PAFT). 4 Let us finally stress the interest in solving linearized ver- 
sions of more complex problems in order to gain some insight on whether 
the properties are related to the nonlinear aspects or are intrinsically part  
of the problem. Such an approach has been carried out fruitfully, for 
instance, for the Kauffman cellular automaton.  ~ In parallel, it would be 
very helpful to have a better understanding of some simple nonlinear 
problems, such as bootstrap percolation. 
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